DETAILS EXPLANATIONS

Paper-1 (Paper-1)

[PART : A]

1. Maximum negative Bending Moment $=\frac{\mathrm{W} l}{8}$

$$
\mathrm{BM}=\frac{24 \times 10}{8}=30 \mathrm{kN}-\mathrm{m}
$$

$$
\begin{aligned}
\delta & =\frac{5 \mathrm{~W} l^{4}}{384 \mathrm{EI}} \\
\mathrm{~W} & =\mathrm{UDL}-\text { intensity } \\
l & =\text { length } \\
\mathrm{EI} & =\text { Flexural-Rigidity }
\end{aligned}
$$

3. Parallel Axis theorem : Moment of Inertia about any axis parallel to centroidal axis is equal to the moment of Inertia about centroidal axis plus the Area multiplied by square of distance between the axis.

$$
\mathrm{I}=\mathrm{I}_{\mathrm{CG}}+\mathrm{A} \cdot \mathrm{r}^{2}
$$

4.

$$
\mathrm{I}=\frac{\mathrm{BD}^{3}}{3}=\frac{400 \times 200^{3}}{3}=2.67 \times 10^{8} \mathrm{~mm}^{4}
$$

5. Principal Stresses :

$$
\sigma_{1} \text { or } \sigma_{2}=\left(\frac{\sigma_{\mathrm{n}_{1}}+\sigma_{\mathrm{n}_{2}}}{2}\right) \pm \sqrt{\left(\frac{\sigma_{\mathrm{n}_{1}}-\sigma_{\mathrm{n}_{2}}}{2}\right)^{2}+\tau_{\mathrm{xy}}^{2}}
$$

6. It is the temperature at which the creep is uncontrollable.
7.

$$
\begin{aligned}
\mathrm{E} & =2 \mathrm{G}(1+\mu) \\
\mathrm{G} & =\frac{2 \times 10^{5}}{2(1+0.28)} \\
\mathrm{G} & =78125 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
\end{aligned}
$$

\because For mild steel

$$
\begin{aligned}
& \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \\
& \mu=0.28
\end{aligned}
$$

8.

$$
\mathrm{M}_{\mathrm{x}}=-\mathrm{P} . \mathrm{x}
$$

Strain Energy $(U)=\int_{0}^{L} \frac{M_{x}^{2} d x}{2 E I}$

$$
U=\frac{P^{2} L^{3}}{6 E I}
$$

9. Fixed end moment at ' A '.

$$
\mathrm{M}_{\mathrm{FAB}}=\frac{10 \times 2 \times 3^{2}}{5^{2}}=7.2 \mathrm{kN}-\mathrm{m}
$$

10. Factored load

Case (i) $\quad=(35+25+12) \times 1.2=86.4 \mathrm{kN}-\mathrm{m}$
Case (ii) $\quad=(35+25) \times 1.5=90 \mathrm{kN}-\mathrm{m}$
So, factored load $=90 \mathrm{kN}-\mathrm{m}$
11. For controlling deflection in any beam the span to depth ratio is controlled.
12. Bending-stress ' f ' $=\frac{M}{Z}=\frac{150 \times 10^{6}}{\left(\frac{100 \times 250^{2}}{6}\right)}=144 \mathrm{~N} / \mathrm{mm}^{2}$
13. Coefficient of Uniformity

$$
\mathrm{C}_{\mathrm{u}}=\frac{\mathrm{D}_{60}}{\mathrm{D}_{10}}=\frac{0.80}{0.28}=2.85
$$

Coefficient of Curvature

$$
\mathrm{C}_{\mathrm{C}}=\frac{\mathrm{D}_{30}^{2}}{\mathrm{D}_{10} \cdot \mathrm{D}_{60}}=\frac{0.34^{2}}{(0.28)(0.80)}=0.516
$$

14. If degree of consolidation $U>0.6$

Time factor $\mathrm{T}_{\mathrm{V}}=-0.9332-0.0851 \log _{10}(1-\mathrm{U})$
15. Effective Stress $(\bar{\sigma})=$ Total stress $\left(\sigma_{\mathrm{T}}\right)$ - Pore pressure (U)

$$
\begin{aligned}
& \bar{\sigma}=\sigma_{\mathrm{T}}-\gamma_{\mathrm{w}} \cdot \mathrm{~h} \\
& \bar{\sigma}=50-(10 \times 2.5)=25 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

16. $\quad V_{V}=V_{S}$

$$
\begin{aligned}
& \text { Void Ratio }=\frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{~V}_{\mathrm{s}}}=1 \\
& \text { Porosity } \mathrm{n}=\frac{\mathrm{e}}{1+\mathrm{e}}=\frac{1}{1+1}=0.5
\end{aligned}
$$

17. Gantry girders are used in workshops to transfer the load from one corner to another.
18. Stiffeners are used to prevent the buckling in girders in both horizontal and vertical direction.
19. For RC-Slabs minimum Reinforcement is

$$
\begin{aligned}
& 0.12 \% \rightarrow \text { For HYSD-bars } \\
& 0.15 \% \rightarrow \text { For Mild-Steel }
\end{aligned}
$$

20. External indeterminacy is the number of support-reactions that can not be calculated using equilibrium equations only.
[PART : B]
21. Poisson's Ratio $=\frac{1}{\mathrm{~m}}=\mu=\frac{\text { lateral strain }}{\text { longitudinal strain }}$

$$
=\frac{\left(\frac{4.5 \times 10^{-3}}{28}\right)}{\left(\frac{2}{1 \times 10^{3}}\right)}=\frac{4.5 \times 10^{-3} \times 1 \times 10^{3}}{28 \times 2}=0.08
$$

22. \because Strain Energy Ratio due to equal torsion (T)

$$
\begin{array}{ll}
\Rightarrow & \frac{\mathrm{U}_{1}}{\mathrm{U}_{2}}=\left(\frac{\mathrm{d}_{2}}{\mathrm{~d}_{1}}\right)^{4} \Rightarrow \frac{40}{\mathrm{U}_{2}}=\left(\frac{2 \mathrm{~d}}{\mathrm{~d}}\right)^{4} \\
\Rightarrow & \mathrm{U}_{2}=\frac{40}{16}=2.5 \mathrm{kN}-\mathrm{m}
\end{array}
$$

23. The angle of twist (ϕ) at the point of application of torque will be same

$$
\begin{align*}
\phi_{1} & =\phi_{2} \\
\frac{\mathrm{~T}_{\mathrm{A}} \mathrm{~L}_{\mathrm{A}}}{\mathrm{GI}} & =\frac{\mathrm{T}_{\mathrm{B}} \mathrm{~L}_{\mathrm{B}}}{\mathrm{GI}} \tag{i}
\end{align*}
$$

Since Torsional Rigidity (G.I.) is same.

$$
\begin{array}{rlrl}
\text { and } & & \mathrm{T} & =\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}} \\
\mathrm{~T}_{\mathrm{A}}(1) & =\mathrm{T}_{\mathrm{B}}(3) \tag{ii}\\
\mathrm{T}_{\mathrm{A}} & =3 \mathrm{~T}_{\mathrm{B}} \\
\Rightarrow \quad 3 \mathrm{~T}_{\mathrm{B}}+\mathrm{T}_{\mathrm{B}} & =600 \\
\mathrm{~T}_{\mathrm{B}} & =150 \mathrm{~N}-\mathrm{m} \\
\therefore \quad \mathrm{~T}_{\mathrm{A}} & =600-150=450 \mathrm{~N}-\mathrm{m}
\end{array}
$$

$$
\mathrm{q}_{\max }=\frac{3}{2} \mathrm{q}_{\mathrm{avg}}
$$

Maximum Shear stress

$$
\begin{aligned}
& (\mathrm{q})_{\max }=1.5 \times \frac{\mathrm{F}}{\text { B.D. }} \\
& (\mathrm{q})_{\max }=1.5 \times \frac{250 \times 10^{3}}{250 \times 350}=4.28 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

25. If the other principal stress is tensile

$$
\begin{aligned}
& \Rightarrow \quad \frac{P_{1}-P_{2}}{2}=q \\
& \Rightarrow \quad \frac{P_{1}-100}{2}=100 \\
& \Rightarrow \quad P_{1}=300 \mathrm{MPa}
\end{aligned}
$$

If the other principal stress is compressive

$$
\begin{aligned}
& & \frac{\mathrm{P}_{1}+100}{2} & =100 \\
\Rightarrow & & \mathrm{P}_{1} & =100 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

26. For the vertical reaction at right support

$$
\begin{aligned}
& \mathrm{V}_{2}=\frac{1000 \times 5 \times 2.5}{40} \\
& \mathrm{~V}_{2}=312.5 \mathrm{~N}
\end{aligned}
$$

Considering right segment and taking moment about crown :

$$
\begin{aligned}
& \mathrm{H}_{2} \times 5 & =\mathrm{V}_{2} \times 20 \\
\Rightarrow \quad & \mathrm{H}_{2} & =\frac{312.5 \times 20}{5}=1250 \mathrm{~N}
\end{aligned}
$$

27. By the use of Betti's theorem,

Load at $Z \times 6=(20 \times 8)+(40 \times 5)$
So, load at $Z=\left(\frac{160+200}{6}\right)$
load at
$\mathrm{Z}=60 \mathrm{kN}$

28. By External work method

External work $=$ Internal work

$$
\mathrm{P} \delta=\mathrm{M}_{\mathrm{p}} \cdot \theta+\mathrm{M}_{\mathrm{p}} 2 \theta+4 \mathrm{M}_{\mathrm{p}} \theta
$$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{P} \cdot \frac{\mathrm{~L}}{2} \theta=7 \mathrm{M}_{\mathrm{p}} \theta \\
\Rightarrow & \mathrm{M}_{\mathrm{P}}=\frac{\mathrm{PL}}{14} \\
\Rightarrow & \mathrm{M}_{\mathrm{p}}=\frac{20 \times 10}{14}=14.29 \mathrm{kN}-\mathrm{m}
\end{array}
$$

29. Load Bearing Stiffners :

- Bearing stiffners are provided at the points of concentrated loads and at supports.
- Where these stiffners are to provide restraint against torsion of the plate girder at the ends.

$$
I \neq \frac{D^{3} \times T}{250} \times \frac{R}{W}
$$

30. Losses in Pre-stress
I. Losses occuring in Post-tensioned members only :
(i) Loss due to friction
(ii) Loss due to slip of anchorage
II. Losses occuring in both Pre and Post-tensioned Members :
(i) Loss due to elastic shortening
(ii) Due to creep of concrete
(iii) Due to creep of steel
(iv) Due to shrinkage of concrete
31. The torsion wire is prestressed accurately to an extent equal to 100% of the scale reading. Then the sample is evenly distributed on the balance pan to counteract the prestressed torsion and the scale is brought back to the zero. As the sample dries, the loss in weight is continuously balanced by the rotation of a drum calibrated directly to read moisture $\%$ on wet basis.

32. Allen Hazen Equation

$$
\mathrm{K}=\mathrm{C} \cdot \mathrm{D}_{10}^{2}
$$

Where, $\quad D_{10}=$ Effective size in cm
$\mathrm{K}=$ Coefficient of permeability (cm)

$$
C=100-150
$$

Note : It is valid only for particle size of soil 0.1 to 3.0 mm . So, It is valid for sand.
[PART : C]
33.

$$
\begin{aligned}
\mathrm{K} & =\frac{\mathrm{q} \cdot l}{\mathrm{~A} \times \mathrm{h}} \\
\mathrm{~K} & =\frac{626 \times 18}{44.18 \times 60 \times 24.7} \\
& =1.72 \times 10^{-1} \mathrm{~cm} / \mathrm{sec} \\
\mathrm{~A} & =\frac{\pi(7.5)^{2}}{4}=44.18 \mathrm{~cm}^{2}
\end{aligned}
$$

Discharge-Velocity :

$$
\begin{aligned}
& \mathrm{V}=\mathrm{K} . \mathrm{i}=1.72 \times 10^{-1} \times \frac{24.7}{18} \\
& \mathrm{~V}=2.36 \times 10^{-1} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

Seepage Velocity :

$$
\mathrm{V}_{\mathrm{S}}=\frac{\mathrm{V}}{\mathrm{n}}=\frac{2.36 \times 10^{-1}}{0.44}=5.36 \times 10^{-1} \mathrm{~cm} / \mathrm{sec}
$$

For

$$
\mathrm{n}_{1}=44 \%
$$

$$
e_{1}=0.79 ; \frac{e_{1}^{3}}{1+e_{1}}
$$

$$
=\frac{0.79^{3}}{1+0.79}=0.275
$$

For

$$
\mathrm{n}_{2}=39 \%
$$

$$
\mathrm{e}_{2}=\frac{\mathrm{n}_{2}}{1-\mathrm{n}_{2}}=0.64
$$

So, $\quad \frac{\mathrm{e}_{2}^{3}}{1+\mathrm{e}_{2}}=\frac{0.64^{3}}{1+0.64}=0.16$
At $25^{\circ} \mathrm{C}$, viscosity of water $\mu_{1}=8.95$ mili-poise at $20^{\circ} \mathrm{C}, \mu_{2}=10.09$ mili poise :
Considering that,

$$
\begin{array}{rlrl}
\mathrm{K}_{1}: \mathrm{K}_{2} & =\frac{\gamma_{\mathrm{w}_{1}}}{\mu_{1}}: \frac{\gamma_{\mathrm{w}_{2}}}{\mu_{2}} \\
\text { or } \quad \mathrm{K}_{1}: \mathrm{K}_{2} & =\frac{1}{\mu_{1}}: \frac{1}{\mu_{2}} \quad \text { (neglecting effec on } \gamma_{\mathrm{w}} \text {) } \\
\text { at } \quad & \mathrm{K}_{20^{\circ} \mathrm{C}} & =\frac{1.72 \times 10^{-1} \mathrm{~cm} / \mathrm{sec} \times 8.95}{10.09}=1.526 \times 10^{-1} \mathrm{~cm} / \mathrm{sec} \\
\mathrm{e} & =0.79 \quad
\end{array}
$$

Now considering that,

$$
\mathrm{K}_{1}: \mathrm{K}_{2}=\frac{\mathrm{e}_{1}^{3}}{1+\mathrm{e}_{1}}: \frac{\mathrm{e}_{2}^{3}}{1+\mathrm{e}_{2}}
$$

$$
\mathrm{K}_{20^{\circ} \mathrm{C}}, \mathrm{e}=0.64 \text { is equal to }
$$

$$
\begin{aligned}
& 1.526 \times 10^{-1} \times 10 \times \frac{0.16}{0.275} \\
& \mathrm{~K}_{20^{\circ} \mathrm{C}}=0.8878 \times 10^{-1} \\
& \mathrm{~K}_{20^{\circ} \mathrm{C}}=8.88 \times 10^{-2} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

34. The phase diagrams for the soil at liquid-limit and the shrinkage limit are shown in figure below:

Let the weight of the solids W_{s},
Since the soil continuous to remain saturated till it reaches the state of consistency at shrinkage limit, the decrease in the volume of soil mass will be equal to the decrease in the volume of water. So,
$\frac{0.60 \mathrm{~W}_{\mathrm{s}}-0.20 \mathrm{~W}_{\mathrm{s}}}{\gamma_{\mathrm{w}}}=$ Volume at liquid limit-Volume at shrinkage limit
i.e. $\frac{0.40 \mathrm{~W}_{\mathrm{s}}}{\gamma_{\mathrm{w}}}=(40-23.5)$
$\Rightarrow \quad 0.40 \mathrm{~W}_{\mathrm{s}}=16.5 \times 1 \mathrm{gm} / \mathrm{cc}$ $\mathrm{W}_{\mathrm{s}}=41.25 \mathrm{gm}$
Now, at shrinkage-limit

$$
\mathrm{W}_{\mathrm{w}}=0.20 \times 41.25=8.25 \mathrm{gm}
$$

Volume of water $=\mathrm{V}_{\mathrm{w}}=\frac{8.25}{1}=8.25 \mathrm{cc}$ and

$$
\mathrm{V}_{\mathrm{s}}=23.5-8.25=15.25 \mathrm{cc}
$$

So, Specific gravity of solids.

$$
\begin{aligned}
\mathrm{G}_{\mathrm{s}} & =\frac{\mathrm{W}_{\mathrm{s}}}{\mathrm{~V}_{\mathrm{s}} \cdot \gamma_{\mathrm{w}}} \\
& =\frac{41.25}{15.25 \times 1}=2.70
\end{aligned}
$$

Shrinkage - Ratio, $\mathrm{SR}=\frac{\gamma_{\mathrm{d}}}{\gamma_{\mathrm{w}}}=\frac{41.25}{23.5 \times 1}=1.755$
35.

Let $\mathrm{X}-\mathrm{X}$ is the equal area-axis, which is at ' y ' distance from the flange.
For equal area axis :

$$
\begin{aligned}
& \Rightarrow(400 \times 100)+(\mathrm{y} \times 100)=(500-\mathrm{y}) \times 100 \\
& \Rightarrow 100 \mathrm{y}+100 \mathrm{y}=50000-40000 \\
& \Rightarrow \quad \mathrm{y}=\frac{10000}{200}=50 \mathrm{~mm}
\end{aligned}
$$

Plastic moment capacity

$$
\begin{aligned}
\mathrm{M}_{\mathrm{P}} & =\mathrm{f}_{\mathrm{v}} \cdot \mathrm{Z}_{\mathrm{p}} \\
\mathrm{Z}_{\mathrm{p}} & =\text { Plastic section modulus } \\
\mathrm{Z}_{\mathrm{P}} & =\frac{\mathrm{A}}{\mathrm{Z}}\left(\overline{\mathrm{y}}_{1}+\overline{\mathrm{y}}_{2}\right) \\
\frac{\mathrm{A}}{\mathrm{Z}} & =100 \times 450=45000 \mathrm{~mm}^{2} \\
\overline{\mathrm{y}}_{2} & =\frac{450}{2}=225 \mathrm{~mm}
\end{aligned}
$$

- $1100 \mathrm{~mm}{ }^{-}$
$y_{1}=\frac{(400 \times 100 \times 100)+(100 \times 50 \times 25)}{(400 \times 100)+(50 \times 100)}$

$$
y_{1}=91.67 \mathrm{~mm}
$$

So, $\quad \mathrm{M}_{\mathrm{p}}=250 \times(45,000)(225+91.67) \mathrm{N}-\mathrm{mm}$
So, $\quad M_{p}=3562.5 \mathrm{kN}-\mathrm{m}$
36. Let the diameter of solid shaft be d_{s}. Let the external and internal diameter of the hollow shaft be d_{o} and d_{i} respectively.
It is given that both the shafts are made of same material, have same weight and length and are subjected to equal torsional force.
\therefore Weight of solid shaft $=$ Weight of hollow shaft

$$
\begin{aligned}
\Rightarrow \quad \gamma \frac{\pi}{4} \mathrm{~d}_{\mathrm{s}}^{2} \mathrm{~L} & =\gamma \frac{\pi}{4}\left(\mathrm{~d}_{0}^{2}-\mathrm{d}_{\mathrm{i}}^{2}\right) \mathrm{L} \\
\mathrm{~d}_{\mathrm{s}}^{2} & =\mathrm{d}_{\mathrm{o}}^{2}-\mathrm{d}_{\mathrm{i}}^{2}
\end{aligned}
$$

Now, we know that torsional stiffness is given as

$$
\begin{aligned}
K & =\frac{T}{\theta} \\
K & =\frac{\mathrm{GI}_{\mathrm{P}}}{L}
\end{aligned}
$$

For same value of G and L

$$
\begin{aligned}
& \mathrm{K}=\frac{\mathrm{T}}{\theta} \propto \mathrm{I}_{\mathrm{P}} \\
& \frac{\mathrm{~K}_{\text {hollow }}}{\mathrm{K}_{\text {solid }}}=\frac{\mathrm{K}_{\mathrm{h}}}{\mathrm{~K}_{\mathrm{s}}}=\frac{\frac{\pi}{32}\left(\mathrm{~d}_{0}^{4}-\mathrm{d}_{\mathrm{i}}^{4}\right)}{\frac{\pi}{32}\left(\mathrm{~d}_{\mathrm{s}}^{4}\right)} \\
& \Rightarrow \quad \frac{\mathrm{K}_{\mathrm{h}}}{\mathrm{~K}_{\mathrm{s}}}=\frac{\left(\mathrm{d}_{0}^{2}+\mathrm{d}_{\mathrm{i}}^{2}\right)\left(\mathrm{d}_{0}^{2}-\mathrm{d}_{\mathrm{i}}^{2}\right)}{\left(\mathrm{d}_{\mathrm{s}}^{2}\right)^{2}} \\
& \Rightarrow \quad \frac{\mathrm{~K}_{\mathrm{h}}}{\mathrm{~K}_{\mathrm{s}}}=\frac{\left(\mathrm{d}_{0}^{2}+\mathrm{d}_{\mathrm{i}}^{2}\right)\left(\mathrm{d}_{\mathrm{o}}^{2}-\mathrm{d}_{\mathrm{i}}^{2}\right)}{\left(\mathrm{d}_{\mathrm{o}}^{2}-\mathrm{d}_{\mathrm{i}}^{2}\right)\left(\mathrm{d}_{\mathrm{o}}^{2}-\mathrm{d}_{\mathrm{i}}^{2}\right)}
\end{aligned}
$$

$\Rightarrow \quad \frac{\mathrm{K}_{\mathrm{h}}}{\mathrm{K}_{\mathrm{s}}}=\frac{\mathrm{d}_{\mathrm{o}}^{2}+\mathrm{d}_{\mathrm{i}}^{2}}{\mathrm{~d}_{\mathrm{o}}^{2}-\mathrm{d}_{\mathrm{i}}^{2}}$
Now, the quantity $\frac{\mathrm{d}_{\mathrm{o}}^{2}+\mathrm{d}_{\mathrm{i}}^{2}}{\mathrm{~d}_{\mathrm{o}}^{2}-\mathrm{d}_{\mathrm{i}}^{2}}$ is always greater than ' 1 '.
$\therefore \quad \mathrm{K}_{\mathrm{h}}>\mathrm{K}_{\mathrm{s}}$
So, Torsional stiffness of hollow shaft will be more than solid shaft of equal weight and material.
37. Slope deflection equations:

$$
\begin{align*}
& M_{A B}=M_{F A B}+\frac{2 E I}{L}\left(2 \theta_{A}+\theta_{B}-\frac{3 \delta}{L}\right) \tag{i}\\
& M_{B A}=M_{F B A}+\frac{2 E I}{L}\left(2 \theta_{B}+\theta_{A}-\frac{3 \delta}{L}\right) \tag{ii}\\
& M_{B C}=M_{F B C}+\frac{2 E I}{L}\left(2 \theta_{B}+\theta_{C}-\frac{3 \delta}{L}\right) \ldots \text { (iii) } \\
& M_{C B}=M_{F C B}+\frac{2 E I}{L}\left(2 \theta_{C}+\theta_{B}-\frac{3 \delta}{L}\right) \ldots \text { (iv) }
\end{align*}
$$

Fixed end moments:

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{FAB}}=-\frac{\mathrm{Wab}^{2}}{\mathrm{~L}^{2}}=-\frac{25 \times 3 \times 2^{2}}{5^{2}}=-12 \mathrm{kN}-\mathrm{m} \\
& \mathrm{M}_{\mathrm{FBA}}=+\frac{\mathrm{Wba}^{2}}{\mathrm{~L}^{2}}=+\frac{25 \times 2 \times 3^{2}}{5^{2}}=+18 \mathrm{kN}-\mathrm{m} \\
& \mathrm{M}_{\mathrm{FBC}}=-\frac{\mathrm{W} l^{2}}{12}=-\frac{12 \times 8^{2}}{12}=-64 \mathrm{kN}-\mathrm{m} \\
& \mathrm{M}_{\mathrm{FCB}}=+\frac{\mathrm{W} l^{2}}{12}=+\frac{12 \times 8^{2}}{12}=+64 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

For fixed end $\theta_{\mathrm{A}}=0, \theta_{\mathrm{C}}=0, \theta_{\mathrm{B}} \neq 0, \delta \neq 0$
Putting the values in (i), (ii), (iii) and (iv)
$\mathrm{M}_{\mathrm{AB}}=-12+\frac{2 \mathrm{EI}}{5}\left(2 \times 0+\theta_{\mathrm{B}}-\frac{3 \times\left(5 \times 10^{-3}\right)}{5}\right)$
$\mathrm{M}_{\mathrm{AB}}=-12+0.4 \mathrm{EI}_{\mathrm{B}}-0.0012 \mathrm{EI}$
$\mathrm{M}_{\mathrm{AB}}=-12+0.4 \mathrm{EI} \theta_{\mathrm{B}}-108000$
$\mathrm{M}_{\mathrm{AB}}=0.4 \mathrm{EI}_{\mathrm{B}}-108012$
$\mathrm{M}_{\mathrm{BA}}=+18+\frac{2 \mathrm{EI}}{5}\left(2 \theta_{\mathrm{B}}+0-\frac{3 \times\left(5 \times 10^{-3}\right)}{5}\right)$
$\mathrm{M}_{\mathrm{BA}}=18+0.4 \mathrm{EI}\left(2 \theta_{\mathrm{B}}-0.003\right)$
$\mathrm{M}_{\mathrm{BA}}=18+0.8 \mathrm{EI} \theta_{\mathrm{B}}-108000$
$\mathrm{M}_{\mathrm{BA}}=0.8 \mathrm{EI}_{\mathrm{B}}-107982$

$$
\mathrm{M}_{\mathrm{BC}}=-64+\frac{2 \mathrm{EI}}{8}\left[2 \theta_{\mathrm{B}}+0-\frac{3 \times\left(-5 \times 10^{-3}\right)}{5}\right]
$$

$$
=-64+\frac{2 \mathrm{EI}}{8}\left[2 \theta_{\mathrm{B}}+0.003\right]
$$

$$
\mathrm{M}_{\mathrm{BC}}=-64+0.5 \mathrm{EI} \theta_{\mathrm{B}}+67500
$$

$$
\mathrm{M}_{\mathrm{BC}}=67436+0.5 \mathrm{EI} \theta_{\mathrm{B}}
$$

$$
\mathrm{M}_{\mathrm{CB}}=64+\frac{2 \mathrm{EI}}{8}\left[2 \theta_{\mathrm{C}}+\theta_{\mathrm{B}}-\frac{3 \times\left(-5 \times 10^{-3}\right)}{5}\right]
$$

$$
\mathrm{M}_{\mathrm{CB}}=64+0.25 \mathrm{EI}_{\mathrm{B}}+67500
$$

$$
\mathrm{M}_{\mathrm{CB}}=0.25 \mathrm{EI} \theta_{\mathrm{B}}+67564
$$

For equilibrium of Joint 'B'

$$
\begin{aligned}
& \quad \mathrm{M}_{\mathrm{BC}}+\mathrm{M}_{\mathrm{BA}}=0 \\
& \Rightarrow \\
& \Rightarrow \quad 18 \mathrm{EI} \theta_{\mathrm{B}}-107982+67436+0.5 \mathrm{EI} \theta_{\mathrm{B}}=0 \\
& \Rightarrow \quad 1.3 \mathrm{EI} \theta_{\mathrm{B}}=40546 \\
& \Rightarrow \quad \mathrm{EI} \theta_{\mathrm{B}}=31189.23
\end{aligned}
$$

Putting the value of EI_{B} in all equations

$$
\begin{aligned}
\mathrm{M}_{\mathrm{AB}} & =(0.4 \times 31189.23)-108012=-95536.3 \mathrm{~N}-\mathrm{m} \\
\mathrm{M}_{\mathrm{AB}} & =-95.54 \mathrm{kN}-\mathrm{m} \\
\mathrm{M}_{\mathrm{BA}} & =(0.8 \times 31189.23)-107982 \\
& =-83030.62 \mathrm{~N}-\mathrm{m} \\
\mathrm{M}_{\mathrm{BA}} & =-83.03 \mathrm{kN}-\mathrm{m} \\
\mathrm{M}_{\mathrm{BC}} & =67436+(0.5 \times 31189.23) \\
& =83030.62 \mathrm{~N}-\mathrm{m} \\
\mathrm{M}_{\mathrm{BC}} & =+83.03 \mathrm{kN}-\mathrm{m} \\
\mathrm{M}_{\mathrm{CB}} & =(0.25 \times 31189.23)+67564 \\
& =75361.3 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

$$
\mathrm{M}_{\mathrm{CB}}=75.36 \mathrm{kN}-\mathrm{m}
$$

38. Since the beam is an Isolated T-beam :

$$
\begin{aligned}
l_{0} & =0.7 \mathrm{l}=0.7 \times 8 \\
& =5.6 \mathrm{~m}(\text { due to fixed ends })
\end{aligned}
$$

effective-width of flange of T-beam :

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{F}}=\frac{l_{0}}{\left(\frac{l_{0}}{\mathrm{~B}}\right)+4}+\mathrm{b}_{\mathrm{w}}=\frac{5600}{\left(\frac{5600}{1000}\right)+4}+300=883.33 \mathrm{~mm} \\
& \mathrm{~b}_{\mathrm{w}}=300 \mathrm{~mm}
\end{aligned}
$$

effective depth $(\mathrm{d})=600 \mathrm{~mm}$

$$
\begin{aligned}
\mathrm{D}_{\mathrm{F}} & =120 \mathrm{~mm} \\
\mathrm{~A}_{\mathrm{ST}} & =5 \times \frac{\pi}{4} \times 25^{2}=2454.375 \mathrm{~mm}^{2}
\end{aligned}
$$

For moment of resistance
(i) Let

$$
\mathrm{x}_{\mathrm{u}}<\mathrm{D}_{\mathrm{F}}
$$

i.e. Neutral Axis lies within the flange.

For x_{u}

$$
\mathrm{C}=\mathrm{T}
$$

$$
\begin{aligned}
0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{~B}_{\mathrm{F}} \mathrm{x}_{\mathrm{u}} & =0.87 \mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{ST}} \\
\mathrm{x}_{\mathrm{u}} & =\frac{0.87 \times 2454.375 \times 415}{0.36 \times 20 \times 883.33} \\
\mathrm{x}_{\mathrm{u}} & =139.40 \mathrm{~mm}>\mathrm{D}_{\mathrm{F}}
\end{aligned}
$$

So, Assumption (i) is wrong.
(ii) Let $\frac{3}{7} x_{u} \geq D_{F}$

For $\mathrm{x}_{\mathrm{u}} \quad \mathrm{C}=\mathrm{T}$
$\Rightarrow 0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{b}_{\mathrm{w}} \mathrm{x}_{\mathrm{u}}+0.45 \mathrm{f}_{\mathrm{ck}}\left(\mathrm{B}_{\mathrm{F}}-\mathrm{b}_{\mathrm{w}}\right) \mathrm{D}_{\mathrm{F}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}$
$\Rightarrow\left(0.36 \times 20 \times 300 \mathrm{x}_{\mathrm{u}}\right)+0.45 \times 20(833.33-300) 120=0.87 \times 415 \times 2454.375$
$\Rightarrow \quad \mathrm{x}_{\mathrm{u}}=138.59 \mathrm{~mm}$

$$
\frac{3}{7} \mathrm{x}_{\mathrm{u}}=59.157<\mathrm{D}_{\mathrm{F}}
$$

So, the (ii) assumption is also wrong.
(iii)

$$
\begin{aligned}
x_{u} & >D_{F} \\
\frac{3}{7} x_{u} & <D_{F}
\end{aligned}
$$

So, For $\mathrm{x}_{\mathrm{u}} \quad \mathrm{C}=\mathrm{T}$
$\Rightarrow 0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{b}_{\mathrm{w}} \mathrm{x}_{\mathrm{u}}+0.45 \mathrm{f}_{\mathrm{ck}}\left(\mathrm{B}_{\mathrm{F}}-\mathrm{b}_{\mathrm{w}}\right) \mathrm{y}_{\mathrm{f}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{ST}}$
$\Rightarrow 0.36 \times 20 \times 300 \mathrm{x}_{\mathrm{u}}+0.45 \times 20(883.33-300)$

$$
\begin{aligned}
& \left\{\left(0.15 \mathrm{x}_{4}+0.65 \times 120\right)\right\}=0.87 \times 415 \times 5 \times \frac{\pi}{4}(25)^{2} \\
& \Rightarrow 2160 \mathrm{x}_{\mathrm{u}}+\left(787.49 \mathrm{x}_{\mathrm{u}}+409497.66\right)=886152.09 \\
& \Rightarrow \quad \mathrm{x}_{\mathrm{u}}=\frac{476654.43}{2947.49}=161.71 \mathrm{~mm}
\end{aligned}
$$

So,

$$
\begin{aligned}
x_{u} & >D_{F} \\
\frac{3}{7} x_{u} & =69.30<D_{F}
\end{aligned}
$$

Now, $\quad \mathrm{x}_{\mathrm{u}_{\text {lim }}}=0.48 \mathrm{~d}$

$$
\mathrm{x}_{\mathrm{u}_{\mathrm{lim}}}=0.48 \times 600=288 \mathrm{~mm}
$$

$$
\mathrm{x}_{\mathrm{u}}<\mathrm{x}_{\mathrm{u}_{\lim }} \quad \text { under } \mathrm{R} / \mathrm{F} \text { section. }
$$

\therefore M.R. $=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{b}_{\mathrm{w}} \mathrm{x}_{\mathrm{u}}\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right)+0.45 \mathrm{f}_{\mathrm{ck}}\left(\mathrm{B}_{\mathrm{F}}-\mathrm{b}_{\mathrm{w}}\right) \mathrm{y}_{\mathrm{F}}\left(\mathrm{d}-\frac{\mathrm{y}_{\mathrm{F}}}{2}\right)$
M.R. $\Rightarrow \quad y_{F}=0.15 x_{u}+0.65 D_{F}$

$$
=(0.15 \times 161.71)+(0.65 \times 120)=102.25 \mathrm{~mm}
$$

$\mathrm{MR}=(0.36 \times 20 \times 300 \times 161.71)+0.45 \times 20(883.33-300) \times 102.25$

$$
\times\left(600-\frac{102.25}{2}\right)
$$

$$
\begin{aligned}
& \mathrm{MR}=349293.6+294641277.3 \\
& \mathrm{MR}=294.99 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\
& \mathrm{MR}=294.99 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

39. (i) Bearing stresses at Bends :

The bearing stress inside a bend is any other bend shall be calculated as given below :
Bearing stress $=\frac{\mathrm{F}_{\mathrm{BT}}}{\mathrm{r} \cdot \phi}$
Where, $\quad F_{B T}=$ Tensile force due to design loads in a bar or group of bars
$\mathrm{r}=$ internal radius of the bend
$\phi=$ size of the bar or, in bundle, the size of bar of equivalent area
for limit state method of design this stress shall not exceed $\frac{1.5 \mathrm{f}_{\mathrm{ck}}}{1+\left(\frac{2 \phi}{\mathrm{a}}\right)}$.
where, $\quad \mathrm{f}_{\mathrm{ck}} \rightarrow$ characteristic strength
$\phi \rightarrow$ as given above
$\mathrm{a} \rightarrow$ center to center distance between bars or group of bars perpendicular of the plan of bend.
(ii) Conditions for curtailment of flexural R/F in tension:
(a) The shear at the cutoff point doesnot exceed two-third that permitted, including the shear strength of web reinforcement provided.
(b) Stirrup area in excess of that required for shear and torsion is provided along each terminated bar over a distance from the cutoff point equal of three-fourths. The effective depth of the member excess stirrup area shall be not less than $0.4 \mathrm{~b} . \mathrm{S} / \mathrm{f}_{\mathrm{y}}$, where ' b ' is the breadth of the beam, S is the spacing and f_{y} is the characteristic strength of reinforcement in $\mathrm{N} / \mathrm{mm}^{2}$. The resulting spacing shall not exceed " $\mathrm{d} / 8 \beta_{\mathrm{b}}$ ". Where β_{b} is the ratio of the area of bars cutoff to the total area of bars at the section, and ' d ' is the effective depth.
(c) For 36 mm and smaller bars, the continuing bars provide double the area required for flexure at the cutoff point and the shear doesn't exceed three-fourth that permitted.

